
Integrating Evolutionary Computation Components in

Ant Colony Optimization

S. Alonso, O. Cordón, I. Fernández de Viana, F. Herrera

Sergio Alonso
Department of Computer Science and Artificial Intelligence
E.T.S.I. Ingeniería Informática
University of Granada
c/ Daniel Saucedo Aranda, s/n
18071 - Granada, Spain
E-mail: zerjio@zerjio.com

Oscar Cordón
Department of Computer Science and Artificial Intelligence
E.T.S.I. Ingeniería Informática
University of Granada
c/ Daniel Saucedo Aranda, s/n
18071 - Granada, Spain
Phone: +34-958-246143
Fax: +34-958-243317
E-mail: ocordon@decsai.ugr.es

Iñaki Fernández de Viana
Dpto. de Electrónica Sistemas Informáticos y Automática (IESIA)
Universidad de Huelva
Carretera Huelva - La Rábida
21071 Palos de la Frontera (Huelva), Spain
Phone: +34-959-017371
E-mail: ijfviana@ugr.es

Francisco Herrera
Department of Computer Science and Artificial Intelligence
E.T.S.I. Ingeniería Informática
University of Granada
c/ Daniel Saucedo Aranda, s/n
18071 - Granada, Spain
Phone: +34-958-240598
Fax: +34-958-243317
E-mail: herrera@decsai.ugr.es

This work has been already published:

S. Alonso,  O. Cordón,  I.  Fernández de Viana,  F. Herrera,  Integrating Evolutionary
Computation Components in Ant Colony Optimization Evolutionary Algorithms:
An Experimental Study.  Recent Developments in Biologically Inspired Computing, L.
Nunes de Castro, F.J. Von Zuben (Eds.), Idea Group Publishing, 2004, 148-180



Integrating Evolutionary Computation Components in

Ant Colony Optimization*

ABSTRACT

This chapter introduces two different ways to integrate Evolutionary Computation

Components in Ant Colony Optimization (ACO) Metaheuristic. First of all ACO

metaheuristic is introduced and compared to Evolutionary Computation to notice their

similarities and differences. Then two new models of ACO algorithms that include some

Evolutionary Computation concepts (Best-Worst Ant System and exchange of memoristic

information in parallel ACO algorithms) are presented with some empirical results, that

show improvements in the quality of the solutions when compared with more basic and

classical approaches. 
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INTRODUCTION

Complex combinatorial optimization problems arise in many different fields such as

economy, commerce, engineering or industry. These problems are so complex that there

is no algorithm known that solves them in polynomial time (Garey & Johnson, 1979).

These kinds of problems are called NP-hard.

Still, many of these problems have to be solved in a huge number of practical settings and

therefore a large number of algorithmic approaches were proposed to tackle them. The

existing techniques can roughly be classified into exact and approximate algorithms.

Exact algorithms try to find an optimal solution and to prove that the solution obtained is

actually an optimal one. These algorithms include techniques such as backtracking,

branch and bound, dynamic programming, etc. (Papadimitriou & Steiglitz, 1982)

(Brassard & Bratley, 1996). Because exact algorithms show poor performance for many

problems, several types of approximate algorithms were developed that provide high

quality solutions to combinatorial problems in short computation time.

Approximate algorithms can be classified into two main families: deterministic and

probabilistic. Deterministic algorithms always produce the same solution when the

starting conditions are the same, while the later algorithms are characterized by a non

deterministic behaviour, that is, for a specific problem and in the same execution

conditions (same seeds from the random number generators, same values of the different

parameters, same number of iterations, and so on), they return different solutions. 

A different classification for approximate algorithms distinguishes between construction

algorithms and local search algorithms. The former are based on generating solutions

from scratch by adding solution components step by step. The best known example are

greedy construction heuristics (Brassard & Bratley, 1996). Their advantage is speed: they

are typically very quick and, in addition, often return reasonably good solutions.

However, these solutions are not guaranteed to be optimal with respect to small local

changes. Local search algorithms repeatedly try to improve the current solution by

movements to (hopefully better) neighbouring solutions. The simplest case are iterative

improvement algorithms: if in the neighbourhood of the current solution s, a better

solution s' is found, it replaces the current solution and the search is continued from s'; if

no better solution is found, the algorithm terminates in a local optimum. Nowadays,



hybridizations of both techniques are usually used: any construction algorithm builds an

initial solution which is then improved by a local search algorithm. 

Unfortunately, iterative improvement algorithms may become stuck in poor quality local

optima. To allow them for a further improvement in solution quality, in the last two

decades the research in this field has moved attention to the design of general-purpose

techniques for guiding underlying, problem-specific construction or local search

heuristics. These techniques are called Metaheuristics (Glover & Kochenberger, 2003).

They involve concepts that can be used to define heuristic methods, that is, metaheuristics

can be seen as a general algorithmic framework which can be applied to different

(combinatorial) optimization problems with relatively few modifications if given some

underlying, problem specific heuristic method. In fact, metaheuristics are now widely

recognized as the most promising approaches for attacking hard combinatorial

optimization problems (Aarts & Lenstra, 1997) (Michalewicz & Fogel, 2000) (Reeves,

1995).

Heuristics Based on Nature or  Bioinspired Algorithms (Colorni, A., Dorigo, M.,

Maffioli, F., Maniezzo, V., Righini, G. & Trubian M., 1996) are approximate algorithms

that have achieved good results. All of them share at least one quality: they operate

simulating some natural processes, although some of them have evolved in order to

increase their effectiveness. However, these  improvements sometimes include some

aspects that do not have a direct natural inspiration.

The family of Bioinspired Algorithms include Genetic Algorithms (Michalewicz, 1996)

(where a set of chromosomes evolve by means of mutations and crossovers), Simulated

Annealing (Aarts & Korst, 1990) (that exploits an analogy between the way in which a

metal cools and freezes into a minimum energy crystalline structure -the annealing

process- and the search for a minimum in a more general system) and Ant Colony

Optimization (ACO) (Dorigo & Di Caro, 1999), among others.

The ACO Metaheuristic (Dorigo, Di Caro & Gambardella, 1999) (Dorigo & Di Caro,

1999) is one of the most recent bioinspired metaheuristics. The initial models were

developed by Dorigo, Maniezzo and Colorni (Dorigo, Maniezzo & Colorni, 1996) a few

years ago. Recently, a large number of authors have developed more complex models.



These algorithms take inspiration from the behaviour of real ant colonies to identify

shortest paths between the nest and a food source. While walking between their nest ant

and the source food, the ants deposit a substance called pheromone. When ants arrive to a

path intersection, they need to choose the path to follow. They select it applying a

probabilistic decision biased by the amount of pheromone: stronger pheromone trails are

preferred. The most promising paths receive a greater pheromone after some time. This is

due to the fact that, because these paths are shorter, the ants following them are able to

reach the goal quicker and to start the trip back soon. Finally, the pheromone is

evaporated by the environment, and makes less promising paths lose pheromone because

they are progressively visited by less ants. 

Evolutionary Computation (EC) (Bäck, Fogel & Michalewicz, 1998) is the general term

for several computational techniques which are based to some degree on the evolution of

biological life in the natural world. All of these techniques share some properties: they

use a population of individuals with the ability to reproduce, these individuals suffer some

genetic variations (usually mutations and crossovers) and there exists some kind of

“natural” selection among them.

In this contribution, two ACO models which incorporate some of these EC specific

components to the ACO basic model are introduced in order to improve its performance.

These models are the Best-Worst Ant System and the exchange of memoristic information

in parallel ACO algorithms. 

To do so, in section 2 we study the principles of ACO and EC and we discuss similarities

and differences between both of them. Then, the two new models of ACO algorithms with

EC components will be studied in section 3. Some future works are presented in section 4

and finally some concluding remarks are pointed out in section 5.

BACKGROUND

In this section, we will introduce both the ACO Metaheuristic (with some specific ACO

models as well) and EC (giving special attention to the components which will be

introduced in the Best-Worst Ant System and the exchange of memoristic information in



parallel ACO algorithms). In the last subsection we will focus on the similarities and

differences between both computational techniques.

THE ACO METAHEURISTIC

The ACO metaheuristic belongs to the group of bioinspired metaheuristics. This

metaheuristic is composed of different algorithms where several cooperative agent

populations try to simulate real ant behaviour.

Specifically, they imitate these insects’ behaviour when searching among the space and

also how they carry their food around the ground. In their searching process, ants deposit

a small amount of pheromone, which is a substance that can be “smelled” afterwards. In

the near future, every ant can direct its search (and so direct the search of the whole

colony as a group) according to the amounts of this hormone on the ground. The way an

ant selects the direction it should follow is easy: it takes any direction randomly, but its

decision is biased by the pheromone amount in each possible path. The continuous

movement of every ant in the colony causes the best paths (the shortest ones) to have the

largest amounts of pheromone –the shorter the path, the faster ants go through it, and

consequently more ants walk over the path and more pheromone is left behind-. On the

other hand, longer paths are progressively abandoned. Therefore, the pheromone that was

deposited before finally evaporates. At the end, the best path (the minimum length one) is

found between the ant nest and the food source. This mechanism is illustrated in Figure 1.

PROBLEMS THAT CAN BE SOLVED USING ACO

A large range of problems (mainly discrete combinatorial optimization problems) can be

solved using this kind of approach. All of these problems belong to the group of

(constrained) shortest path problems that can be characterized by the following aspects

(see (Dorigo & Di Caro, 1999) and (Dorigo & Stützle, 2003) for more details):

• There is a set of constraints Ω defined for the problem being solved.

• There is a finite set of components N = {n1, n2, ..., nl}.



• The problem presents several states defined upon ordered component sequences

δ=<nr, ns, ..., un, ...> (<r, s, …, u, …> to simplify) over the elements of N. If Δ  is

the set of all possible sequences, we denote by Δ  the set of feasible (sub)

sequences with respect to the constraints Ω. The elements in Δ  define the feasible

states. |δ| is the length of a sequence δ, i.e., the number of components in the

sequence.

Figure 1: Emergent behaviour of the colony that ends by obtaining the shortest path

between two points (mass recruitment).

A) All ants are in the nest and will begin to search for food.

B) The ants choose a random path since they don’t know which one is shorter

(better).

C) The ants that follow the shorter path return faster to the nest, depositing more

pheromone on their way back.

D) The shortest path has more pheromone, and that makes ants follow it with a

higher probability.

Based on the figure in (Bonabeau, Dorigo & Theraulaz, 1999).



• There is a neighbourhood structure defined as follows: δ2 is a neighbour of δ1  if (i)

both δ1  and δ2 belong to Δ , (ii) the state δ2 can be reached from δ1   in one logical

movement, i.e., if r is the last component of the sequence δ1, there must exist a

component s∈Y such that δ2 =<δ1, s>, i.e., there exists a valid transition between r

and s. The feasible neighbourhood of δ1  is the set containing all sequences δ2∈ Δ

; if δ2∉ Δ , we say that δ2 is in the infeasible neighbourhood of δ1.

• A solution S is an element of Δ  verifying all the problem requirements.

• There is a cost C(S) associated with each solution S.

• In some cases, a cost or an estimate of the cost may be associated to states.

As said, all the previous characteristics hold in combinatorial optimization problems that

can be represented in the form of a weighted graph G=(N,A), where A is the set of edges

that connects the set of components N. The graph G is also called construction graph G.i

Hence, we have that:

• the components nr are the nodes of the graph,

• the states δ  (and hence the solutions S) correspond to paths in the graph, i.e.,

sequences of nodes or edges,

• the edges of the graph, ars, are connections/transitions defining the neighbourhood

structure. δ2 = <δ1,s> is a neighbour of δ1  if node r is the last component of δ1 and

edge ars exists in the graph,

• there may be explicit transition costs crs associated to each edge, and

• the components and connections may have associated pheromone trails τ, which

represent some form of indirect, long term memory of the search process, and

heuristic values η, which represent some heuristic information available on the

problem under solution.



Some typical examples of problems that are easily solved using this metaheuristic are the

Travelling Salesman Problem (TSP) (Bentley, 1992), the Quadratic Assignment Problem

(QAP) (Maniezzo, Colorni & Dorigo, 1994) (Dorigo, et al., 1996), the Job Shop

Scheduling (JSP) (Colorni, Dorigo, Maniezzo & Trubian, 1994), vehicle and network

routing (Schoonderwoerd, Holland, Bruten & Rothkrantz, 1996) (Di Caro & Dorigo,

1998) (Bullnheimer, Hartl & Strauss, 1999b) among many others.

BASICS IF AN ACO ALGORITHM

ACO algorithms are essentially construction algorithms: in each algorithm iteration, every

ant constructs a solution to the problem by travelling on a construction graph.  Each edge

of the graph, representing the possible steps the ant can make, has associated two kinds of

information that guide the ant movement:

• Heuristic information ( ηrs ): It depends only on the problem that we want to

solve. Usually, this information is calculated before the beginning of the run of the

algorithm. It represents the a priori  quality of the arc. If we compare with natural

ants, it corresponds to the difficulty or distance in this part of the path. Clearly, it

only depends on the topography of the ground.

• Memoristic information ( τ rs ): This kind of information is modified during the

run of the algorithm. It only depends on two factors: the number of ants that

followed that arc and on the goodness of the path found by those ants. Comparing

with natural ants, the memoristic information are the amounts of pheromone left

on the ground. This will be called pheromone trail (r, s) from now on.

Exploiting the available pheromone trails and the heuristic information, the artificial ants

(which are simple, computational agents) try to build feasible solutions to the problem

tackled. However, if necessary, they may also build infeasible solutions that may be

penalized depending on the amount of infeasibility. The artificial ant has the following

properties (Dorigo & Di Caro, 1999) (Dorigo & Stützle, 2003):

• It searches minimum cost feasible solutions for the problem being solved.



• It has a memory L storing information about the path followed until that moment,

i.e., L stores the generated sequence. This memory can be used to:     (i) build

feasible solutions, (ii) evaluate the generated solution, and (iii) to retrace the path

the ant has followed.

• It has an initial state δinitial, that usually corresponds to a unitary sequence, and one

or more termination conditions t associated.

• It starts in the initial state and moves towards feasible states, building its

associated solution incrementally.

• When it is in a state δr = <δr-1, r> (i.e., it is located in node r and has previously

followed the sequence δr-1), it can move to any node s of its feasible neighborhood

N(r), defined as N  r ={s∣ars∈A and δ r , s¿ Δ} .

• The movement is made by applying a transition rule, which is a function of the

locally available pheromone trails and heuristic values, the ants private memory,

and the problem constraints. 

• When, during the construction procedure, an ant moves from node r to s, it can

update the pheromone trail τrs associated to the edge ars. This process is called

online step-by-step pheromone trail  update.

• The construction procedure ends when any termination condition is satisfied,

usually when an objective state is reached.

• Once the solution has been built, the ant can retrace the travelled path and update

the pheromone trails on the visited edges/components by means of a process

called online delayed pheromone trail update. This way, the only communication

mechanism among the ants is the data structure storing the pheromone levels of

each edge/component (shared memory).

In addition to the basic behaviour of the ants in the colony, an ACO algorithm comprises

two additional procedures, pheromone trail evaporation and daemon actions. The

pheromone evaporation is triggered by the environment and it is used as a mechanism to

avoid search stagnation and to allow the ants to explore new space regions. Daemon

actions are optional actions -without a natural counterpart- to implement tasks from a

global perspective that is lacking to the local perspective of the ants. Examples are

observing the quality of all the solutions generated and releasing an additional pheromone

amount only on the transitions/components associated to some of the solutions, or



applying a local search procedure to the solutions generated by the ants before updating

the pheromone trails. In both cases, the daemon replaces the online delayed pheromone

update and the process is called offline pheromone trail update. Besides, another usual

action performed by the daemon is the restart of the search when it has got stagnated. It is

usually done by resetting all the pheromone trails to the initial value τ0 and go on with the

search process.

The structure of a generic ACO algorithm is as follows (Dorigo & Di Caro, 1999)

(Dorigo, et al., 1999).

1  Procedure ACO_Metaheuristic

2    parameter_initialization

3    while (termination_criterion_not_satisfied)

4      schedule_activities

5    ants_generation_and_activity()

6    pheromone_evaporation()

7    daemon_actions()      {optional}

8  end schedule_activities

9    end while

10 end Procedure

1 Procedure ants_generation_and_activity()

2   repeat in parallel for k=1 to m (number_of_ants)

3 new_ant(k)

4   end repeat in parallel

5 end Procedure

1  Procedure new_ant(ant_id)

2    initialize_ant(ant_id)

3    L = update_ant_memory()

4    while (current_state ≠ target_state)

 5      P = compute_transition_probabilities(A,L,Ω)

6      next_state = apply_ant_decision_policy(P,Ω)

7      move_to_next_state(next_state)

 if (on_line_step-by-step_pheromone_update)

8    deposit_pheromone_on_the_visited_edge()

 end if



 9  L = update_internal_state()

10   end while

     if (online_delayed_pheromone_update)

11  for each visited edge

12    deposit_pheromone_on_the_visited_edge()

13  end for

     end if

14   release_ant_resources(ant_id)

15 end Procedure

The first step involves the initialization of the parameter values considered by the

algorithm. Among others, the initial pheromone trail value associated to each transition, τ0,

which is a small positive value that is typically the same for all connections/components,

the number of ants in the colony, m, and the weights defining the balance between the

heuristic and memoristic information in the probabilistic transition rule have to be set.ii 

The main procedure of the ACO metaheuristic manages, by means of the

schedule_activities construct, the scheduling of the three components mentioned in

this section: (i) the generation and operation of the artificial ants, (ii) the pheromone

evaporation, and (iii) the daemon actions. The implementation of this construct will define

the existing syncronism between the three components.  While the application to

“classical” NP-hard (non distributed) problems typically uses rather a sequential schedule,

in distributed problems like network routing, parallelism can be easily and efficiently

exploited.

As said, several components are either optional, such as the daemon actions, or strictly

dependent on the specific ACO algorithm, e.g., when and where the pheromone is

deposited. Generally, the online step-by-step pheromone trail update and the online

delayed pheromone trail update are mutually exclusive and they both are not usually

present or missing at the same time (if both are missing, typically the daemon updates the

pheromone trails).

On the other hand, notice that the procedure update_ant_memory involves both

specifying the initial state from which the ant starts its path and storing the corresponding

component in the ant memory L. The decision on which will be that node (it can be a



random choice or a fixed one for the whole colony, a random choice or a fixed one for

each ant, etc.) depends on the specific application.

Finally, note that the procedures compute_transition_probabilities and

apply_ant_decision_policy consider the current state of the ant, the current values of

the pheromone trails visible in that node and the problem constraints Ω to establish the

probabilistic transition process to other feasible states.

STEPS TO SOLVE A PROBLEM USING ACO

From the currently known ACO applications, we can identify some guidelines of how to

attack new problems by ACO. These guidelines can be summarized by the following six

design tasks (Cordón,  Herrera & Stützle, 2002):

• Represent the problem in the form of sets of components and transitions or by

means of a weighted graph that is travelled by the ants to build solutions.

• Appropriately define the meaning of the pheromone trails τrs, i.e., the type of

decision they bias. This is a crucial step in the implementation of an ACO

algorithm and often, a good definition of the pheromone trails is not a trivial task

and it typically requires insight into the problem being solved.

• Appropriately define the heuristic preference to each decision that an ant has to

take while constructing a solution, i.e., define the heuristic information ηrs

associated to each component or transition. Notice that heuristic information is

crucial for good performance if local search algorithms are not available or can not

be applied.

• If possible, implement an efficient local search algorithm for the problem under

consideration, because the results of many ACO applications to NP-hard

combinatorial optimization problems show that the best performance is achieved

when coupling ACO with local optimizers (Dorigo & Di Caro, 1999) (Dorigo &

Stützle, 2003).



• Choose a specific ACO algorithm (some of the available ones are described in the

next section) and apply it to the problem being solved, taking the previous aspects

into account. 

• Tune the parameters of the ACO algorithm. A good starting point for parameter

tuning is to use parameter settings that were found to be good when applying the

ACO algorithm to similar problems or to a variety of other problems. An

alternative to time-consuming personal involvement in the tuning task is to use

automatic procedures for parameter tuning (Birattari, Stützle, Paquete &

Varrentrapp, 2002).

It should be clear that the above steps can only give a very rough guide to the

implementation of ACO algorithms. In addition, often the implementation is an iterative

process, where with some further insight into the problem and the behaviour of the

algorithm, some initially taken choices need to be revised. Finally, we want to insist in the

fact that probably the most important of these steps are the first four, because a poor

choice at this stage typically can not be made up with pure parameter fine-tuning.

INSTANCES OF ACO ALGORITHMS

As said, different ACO models have been proposed. Among them, we find Ant System

(AS) (Dorigo, et al., 1996), Ant Colony System (ACS) (Dorigo & Gambardella, 1997),

Rank-based Ant System (Bullnheimer, Hartl & Strauss, 1999a), Max-Min Ant System

(MMAS) (Stützle & Hoos, 2000) and Best-Worst Ant System (BWAS) (Cordón, Fernández

de Viana, Herrera & Moreno, 2000). Each algorithm has its own transition and update

pheromone rules. In this chapter we will describe two of the first ACO models: AS and

ACS.

ANT SYSTEM

AS, developed by Dorigo, Maniezzo and Colorni in 1991, was the first ACO algorithm.

AS is characterized by the fact that the pheromone update is triggered once all ants have



completed their solutions and it is done as follows. First, all pheromone trails are reduced

by a constant factor, implementing in this way the pheromone evaporation. Second, every

ant of the colony deposits an amount of pheromone which is a function of the quality of

its solution. Initially, AS did not use any daemon actions, but it is very straightforward to,

for example, add a local search procedure to refine the solutions generated by the ants.

Solutions in AS are constructed as follows. At each construction step, an ant k in AS

chooses to go to a next node with a probability that is computed as

prs
k ={ [ τ rs ]α⋅[ηrs ]β

∑u∈N r
k [ τ rs ]

α⋅[ηrs ]
β

, if s∈N k  r 

0, otherwise

where Nk(r) is the feasible neighbourhood of ant k when located at node r, and α, β ∈ ℜ  are

two parameters that weight the relative importance of the pheromone trail and the

heuristic information. Each ant k stores the sequence it has followed so far and this

memory Lk is, as explained before, exploited to determine Nk(r) in each construction step.

As regards parameters α  and β, their role is as follows: if α=0, those nodes with better

heuristic preference have a higher probability of being selected, thus making the

algorithm close to a classical probabilistic greedy algorithm (with multiple starting points

in case ants are located in different nodes at the beginning of each iteration). However, if

β=0, only the pheromone trails are considered to guide the constructive process, which can

cause a quick stagnation, i.e., a situation where the pheromone trails associated to some

transitions are significantly higher than the remainder, thus making the ants always build

the same solutions, usually local optima. Hence, there is a need to establish a proper

balance between the importance of heuristic and pheromone trail information.

As said, the pheromone deposit is made once all ants have finished to construct their

solutions. First, the pheromone trail associated to every arc is evaporated by reducing all

pheromones by a constant factor:

τ rs 1− ρ⋅τ rs



where ρ∈(0,1] is the evaporation rate. Next, each ant retraces the path it has followed (this

path is stored in its local memory Lk) and deposits an amount of pheromone Δτ rs
k  on each

traversed connection:

τ rs τ rsΔτ rs
k , ∀ ars∈S k

where Δτ rs
k = f C  S k  , i.e., the amount of pheromone released depends on the quality

C(Sk) of the solution Sk of ant k.

To summarize the description of the AS, we will show the composition of procedure

new_ant for this particular ACO algorithm:

1  Procedure new_ant(ant_id)

2    k = ant_id; r = generate_initial_state; Sk = r 

3    Lk = r

4    while (current_state ≠ target_state)

5  for each s∈Nk(r) do prs
k =

[ τ rs ]
α⋅[ηrs ]

β

∑u∈N r
k [ τ rs ]

α⋅[ηrs ]
β

6      next_state = apply_ant_decision_policy(P, Nk(r))

7  r = next_state; Sk = <Sk, r>

 8      --- 

 9  Lk = Lk∪r

 10   end while

           { the pheromone_evaporation() procedure triggers and 

             evaporates pheromone in every edge ars: τrs={1-ρ)⋅τrs    } 

11   for each edge ars∈Sk do

12     τrs=τrs+f(c(Sk))

13   end for

14   release_ant_resources(ant_id)

15 end Procedure

Notice that the empty line 8 is included to remark that no online step-by-step pheromone

update is made and that before the line 12, the pheromone evaporation must have been

applied by the daemon. In fact, this is one example where the schedule_activities



construct interferes with the functioning of the single main procedures of the ACO

metaheuristic.

Before concluding this section, it is important to notice that the creators of the AS also

proposed a typically better performing, extended version of this algorithm called elitist AS

(Dorigo, et al., 1996). In elitist AS, once the ants have released pheromone on the

connections associated to their generated solutions, the daemon performs an additional

pheromone deposit on the edges belonging to the best solution found until that moment in

the search process (this solution is also called global-best solution in the following). The

amount of pheromone deposited, which depends on the quality of that global best

solution, is weighted by the number of elitist ants considered, e, as follows:

τ rs=τ rse⋅ f C  S global−best  , ∀ ars∈S global−best

ANT COLONY SYSTEM

ACS is one of the first successors of AS. It introduces three major modifications into AS:

• ACS uses a different transition rule, which is called pseudo-random proportional

rule: Let k be an ant located at a node r, q0∈[0,1] be a parameter, and q a random

value in [0,1]. The next node s is randomly chosen according to the following

probability distribution

If q ≤ q0:

prs
k ={1, if s=arg max

u∈N k  r 
{τ ru¿ηru

β }
0, otherwise

  else (q > q0):

prs
k ={ [ τ rs ]

α⋅[ηrs ]
β

∑u∈N r
k [ τ rs ]

α⋅[ηrs ]
β

, if s∈N k  r 

0, otherwise



As can be seen, the rule has a double aim: when q ≤ q0, it exploits the available

knowledge, choosing the best option with respect to the heuristic information and

the pheromone trail. However, if q > q0, it applies a controlled exploration, as

done in AS. In summary, the rule establishes a trade-off between the exploration

of new connections and the exploitation of the information available at that

moment.

• Only the daemon (and not the individual ants) trigger the pheromone update, i.e.,

an offline pheromone trail update is done. To do so, ACS only considers a single

ant, the one who generated the global best solution, Sglobal-best (although in early

papers, an update based on the iteration-best ant was considered as well (Dorigo,

& Gambardella, 1997), ACS almost always applies a global-best update).

  

The pheromone update is done by first evaporating the pheromone trails in all the

connections used by the global-best ant (it is important to notice that in ACS,

pheromone evaporation is only applied to the connections of the solution that is

also used to deposit pheromone) as follows:

τ rs 1−ρ ⋅τ rs , ∀ ars∈S global−best

Next, the daemon deposits pheromone by the rule:

τ rs  τ rsρ⋅f C  S global−best  , ∀ ars∈S global−best

Additionally, the daemon can apply a local search algorithm to improve the ants'

solutions before updating the pheromone trails.

• Ants apply an online step-by-step pheromone trail update that encourages the

generation of different solutions to those yet found.  Each time an ant travels an

edge ars, it applies the rule:

τ rs1−ϕ ⋅τ rsϕ⋅τ0



where ϕ∈(0,1] is a second pheromone decay parameter. As can be seen, the online

step-by-step update rule includes both, pheromone evaporation and deposit.

Because the amount of pheromone deposited is very small (in fact, τ0 is the initial

pheromone trail value which is chosen in such a way that, in practice, it

corresponds to a lower pheromone trail limit, i.e., by the choice of the ACS

pheromone update rules, no pheromone trail value can fall below τ0), the

application of this rule makes the pheromone trail on the connections traversed by

an ant decrease. Hence, this results in an additional exploration technique of ACS

by making the connections traversed by an ant less attractive to following ants and

helps to avoid that every ant follows the same path.

The procedures new_ant and daemon_actions (which in this case interacts with the

pheromone_evaporation procedure) for ACS are as follows:

1  Procedure daemon_actions

2    for each Sk do local_search(Sk)  {optional}

3    Scurrent-best = best_solution (S)

4    if (better(Scurrent-best, Sglobal-best))

5      Sglobal-best = Scurrent-best

6    end if

7    for each edge ars∈Sglobal-best do

             { the pheromone_evaporation() procedure triggers and 

             evaporates pheromone in edge ars: τrs = (1 - ρ)⋅τrs  }

8      τrs = τrs + ρ⋅f(C(Sglobal-best))

9    end for

10 end Procedure

1  Procedure new_ant(ant_id)

2    k = ant_id; r = generate_initial_state; Sk = r

3    Lk = r

4    while (current_state ≠ target_state)

5  for each s∈N k  r   do compute brs=τ rs⋅ηrs
β          

6  q = generate_random_value_in_[0,1]

 if (q <= q0)



    next_state = max(brs, Nk
(r))

  else

    for each s∈N k  r   do

prs
k =

brs

∑
u∈N k  r 

bru

   next_state = apply_ant_decision_policy(P, N k  r  ) 

 end if

7      r = next_state; 
S k =< S k , r¿

¿

8      τ rs=1−ϕ ⋅τ rsϕ⋅τ0

9      Lk=Lk∪r

10   end while

11   --- 

12   ---

13   ---

14   release_ant_resources(ant_id)

15 end Procedure

EVOLUTIONARY COMPUTATION

EC (Bäck et al., 1998) is the term that denotes the group of algorithms and techniques

which have inspiration on the natural processes that involve evolution. Evolutionary

algorithms (EAs) (Bäck, 1996) constitute a class of search and optimization methods

which share some generic concepts. Some of the techniques that can be included in this

class are Genetic Algorithms, Evolution Strategies, Evolutionary Programming and

Genetic Programming. As said, all of them use a population of competing candidate

solutions which reproduce and evolve themselves by means of combinations and

alterations, and a selection mechanism which increases the proportion of better solutions

in the population. Every different approach has its own genetic structures and own genetic

operators which manipulate and generate new candidate solutions.

Since EAs emulate natural evolution, they adopt a biological terminology to describe their

structural elements and algorithmic operations, but we should keep in mind that these



terms are much more simple than their biological analogous. In table 1, we describe a

mapping of some of the most common terms in EC from nature to computer science.

Progress in natural evolution is based on three fundamental processes: mutation,

recombination and selection of genetic variants. Mutation introduces a random variation

into the existing genetic material, thus allowing the appearance of new characteristics that

did not exist previously. Recombination is the process which hybridises (usually two)

different chromosomes in order to generate a new solution hoping to take advantage of the

best characteristics of the parents, that is, to try to obtain a new solution of the problem

using the best features of both parents. Finally, selection of genetic variants allow the

quality of the chromosomes to increase in the actual population. This later process is

usually accomplished suppressing the worst solutions in the population (not allowing

them to mutate and reproduce themselves). That is usually known by the term survival of

the fittest, introduced in some works of Darwin. Fitness is the term that describes the

quality of an existing solution, and can be used to determine how this solution deserves to

continue existing in the actual solutions’ population and thus, continue evolving into

(hopefully) better solutions.

Nature Computer
Individual Solution to a problem
Population Set of solutions

Fitness Quality of a solution
Chromosome Representation for a solution (e.g. set of parameters)

Gene Part of the representation of a solution (e.g. parameter or degree of freedom)
Growth Decoding of the representation of solutions

Crossover
Mutation

Search operators

Natural Selection Reuse of good (sub-)solutions

Table 1: Nature to Computer terms mapping.

EAs provide a universal optimization technique applicable to a wide range of problem

domains. A generic EA operation mode is now described described:

1. Initialise population

2. Evaluate population

3. Repeat until termination criteria is fulfilled

3.1. Select a sub-population for reproduction (Selection)

3.2. Recombine the “genes” of selected parents

(Recombination or Crossover)



3.3. Mutate the mated population stochastically (Mutation)

3.4. Evaluate the fitness of the new population

3.5. Select the survivors from the actual fitness 

Note that this is a very general approximation of an EA, and there exist so many variants

of EAs that not all of them will fit perfectly in that simple scheme (for example, there are

some EAs which do not use all of these steps).

One of the best advantages of this kind of technique is that it needs no particular

knowledge about the problem structure but the objective fitness function itself. EAs are

robust techniques that are capable of making a good exploitation of the accumulated

information about an initial unknown search space, biasing the search into a more useful

subspace. They provide an efficient and effective approach to manage large, complex and

poorly understood search spaces where other techniques are not useful.

ACO AND EC

Several similarities exist between both the ACO metaheuristic and EC (as well as some

important differences distinguish them). In the following two subsections, the relation

between ACO and EC is analyzed in more detail.

SIMILARITIES AND DIFFERENCES BETWEEN ACO AND EC

There are many similarities between the ACO metaheuristic and EC. The most important

ones are as follows:

1. Both are bioinspired techniques, that is, both of them mimic in some way a natural

process to achieve a good solution of the problem being tackled. Of course, this

similarity has nothing to do with their effectiveness when solving problems, but at

least gives a common framework in which to enclose both techniques.



2. They use a population of individuals to represent problem solutions. Nevertheless,

in EC the solutions are in fact the individuals (chromosomes), while in the ACO

metaheuristic the individuals are ants, which construct and remember the solutions

found so far (but they do not represent the solutions themselves). In EC, every

action is made by the system as a whole, and from a global perspective, could be

compared to the daemon actions in the ACO metaheuristic.

3. Both techniques use of the knowledge collected at the algorithm run-time to bias

the generation of the new population of individuals. However, one main difference

is that, in general, EAs use the current population to store the knowledge about the

problem (the solutions themselves represent the problem acquired knowledge),

whilst in ACO the memoristic structure collecting the pheromone trails (the

pheromone matrix) is considered to perform this task and the solutions found are

not directly used to represent the obtained information about the problem.

Apart from those mentioned in the previous items, there also exist several differences:

1. Almost every ACO algorithm considers the use of heuristic information, in other

words, utilizes some a-priori information about the problem. EAs usually do not

take this kind of information into account. This can be an advantage for the ACO

metaheuristic because this information can be very useful to guide the algorithm

behaviour (specially in the first iterations). If there is no a-priori information about

the problem, or if it is very difficult to code it in the form needed by a particular

ACO algorithm, this information can usually be omitted without changing the

general structure of the algorithm (the component considering the action of the

heuristic information in the transition rule is ignored by setting the associated

weight to zero).

2. EAs can use different mutation and crossover operators while a particular ACO

algorithm uses a single construction rule to generate new solutions to the problem.

Using multiple mutation and crossover operators can give more flexibility to the

search process and can improve the search tackled on the space of the algorithm

(more exploration of the search space).



RELATION BETWEEN ACO AND POPULATION-BASED INCREMENTAL

LEARNING

There is a kind of EAs, the so-called Estimation of Distribution Algorithms (EDAs)

(Larrañaga & Lozano, 2001), which are based on maintaining a memoristic structure that

represents a probability distribution defined on the problem variables. The best known

EDA algorithm is Population-Based Incremental Learning (PBIL) (Baluja & Caruana,

1995). It is important to study the relation between ACO and PBIL to develop a new

hybridized algorithm in Section 3.1.

So, as ACO does, PBIL uses a memoristic structure to generate the problem solutions. It

consists of a probability vector whose dimension is equal to the number of problem

variables. This vector encodes a probabilistic distribution that represents a prototype of

good solutions which the algorithm uses to generate a population of new problem

solutions in each iteration. The first PBIL model used binary arrays to represent solutions

but extended models to solve problems with real variables have been later proposed.

Each position of this probability vector is adapted during the algorithm run-time. The best

solution found in the current iteration is used to update the vector. In principle, this update

is proportional to the quality of that solution, but more recent models use the M best

solutions generated in each iteration for the updating process instead of just the best one. 

The similarities between ACO algorithms and PBIL (Monmarché, Ramat, Dromel,

Slimane & Venturini, 1999) are as follows:

• Both algorithms use some kind of memoristic information to guide the search

process.

• The adaptation rules for the structure encoding this information are very similar.

Besides, the components of the probabilistic vector in PBIL suffer random mutations to

avoid the chance for premature convergence, while the usual ACO models do not include

this action. PBIL also does not use any kind of heuristic information to help in the

solution construction process which is a characteristic that has been present in almost

every ACO model.



TWO MODELS OF ACO WITH EC COMPONENTS

In the previous sections, we have presented the relations between ACO and EC. We have

also shown that there are some specific components that are used successfully in EAs

algorithms but not in ACO. In the next sections, two models which incorporate some of

these EC specific components to the ACO basic model are introduced. The aim of those

hybrid models is to achieve significantly improved computational results when compared

to classical ACO algorithms.

Notice that there have been proposed other hybridizations between EC and ACO, for

example, running a meta-level GA to fine-tuning the ACO parameters (Boote &

Bonabeau, 1998), but they will not be considered in this work.

BEST-WORST ANT SYSTEM

BWAS is a recent, new ACO model which tries to improve the results obtained by adding

some new features from the field of EC. In the next sections, this model will be described

and some empirical results will be analyzed.

JUSTIFICATION OF THE APPROACH

Every algorithm that is proposed to solve hard computational problems (usually NP-hard

problems) has to do some balance between exploration and exploitation of the search

space. If this balance is not good enough, our algorithm can stop finding good solutions

after a short period of time, being stuck in a specific search space zone (it would need

more exploration), or it would not increase the solutions quality because it is not able to

intensify the search in the current space zone to extract the best solutions located on it (it

would need more exploitation).

The ACO metaheuristic does not define how this balance should be achieved, because

how the different solutions are constructed and how the memoristic information is



updated are concrete aspects of every ACO algorithm. Specifically, AS gives too much

importance to the exploration facet, because the whole colony updates the pheromone

trails, and what is more important, evaporation is made in every arc defined in the

pheromone matrix. This makes the algorithm to evolve slowly, with a slow convergence

rate, and consequently not to achieve good quality solutions.

ACS offers a better balance between exploration and exploitation of the search space due

to its new components. On the other hand, the new transition rule encourages more the

exploitation, due to directly selecting the best transition in some of the cases. Besides,

ACS performs a global update which only evaporates using the best solution found

(which decreases exploration and makes exploitation stronger). Also, the online step-by-

step pheromone trail update gives more importance to exploration, causing the ants to

generate different enough solutions in the current iterations, finally achieving a better

balance than AS.

Of course, the use of a local search technique increases the exploitation in both models,

and it is usually utilized to increase performance. In this case, the ACO algorithm behaves

like a multi-start local search, generating different initial solutions for the local search

optimiser, like metaheuristics as ILS (Lourenço, Martin & Stützle, 2003) or VNS

(Mladenovic & Hansen, 1997).

In our case, the BWAS introduce some concepts from EDAs (mainly from PBIL), which

give a different kind of trade-off between both exploration and exploitation. The

evaporation in every arc of the graph gives more diversification to the search process

(more exploration) and the update rule, which involves only the global best and the

current worst solutions, intensifies the search in the best paths (more exploitation).

Besides, a mutation operator is considered to randomly alter the pheromone trails to

introduce diversity, as done in PBIL, and a restart is applied when the search is stagned.

As will be seen in the next sections, this balance seems to achieve better results than other

earlier ACO algorithms.

DESCRIPTION OF THE BWAS



BWAS (Cordón, et al., 2000), proposed by Cordón et al. in 1999, is an ACO algorithm

which incorporates EC concepts. It constitutes another extension of AS, which uses its

transition rule and pheromone evaporation mechanism. That means that  the evaporation is

applied to every transition, as in AS, ASrank (Bullnheimer, et al., 1999) and MMAS

(Stützle & Hoos, 2000)). Besides, as done in MMAS, BWAS always considers the

systematic exploitation of local optimizers to improve the ants' solutions. 

At the core of BWAS, the three following daemon actions are found:

• The best-worst pheromone trail update rule, which reinforces the edges contained

in the global best solution. In addition, the update rule penalizes every connection

of the worst solution generated in the current iteration, current-worst, that are not

present in the global-best one (to avoid penalizing possible good paths) through an

additional evaporation of the pheromone trails. Hence, the BWAS update rule

becomes:

τ rs  τ rsρ⋅f C  S global−best  , ∀ ars∈S global−best

τ rs1− ρ ⋅τ rs , ∀ ars∈S current−worst y ars∉S global−best

As we have mentioned before, the first part of this rule intensifies exploitation by

giving a higher probability to the paths contained in the best solution found so far,

and the second part introduces more exploration by avoiding the worst paths. 

• A pheromone trail mutation is performed to introduce diversity in the search

process. To do so, the pheromone trail associated to one of the transitions starting

from each node (i.e., each row of the pheromone trail matrix) is mutated with

probability Pm by considering any real-coded mutation operator. This daemon

action obviously increases the exploration face of the algorithm.

     

The original BWAS proposal applied an operator altering the pheromone trail of

every mutated transition by adding or subtracting the same amount in each

iteration. The mutation range mut(it, τthreshold), which depends on the average of the

pheromone trails in the transitions of the global best solution, τthreshold, is less strong



in the early stages of the algorithm -when there is no risk of stagnation- and

stronger in the latter ones, when the danger of stagnation is stronger:

τ ' rs{τ rsmut  it , τ threshold  , if a=0

τ rs−mut  it , τ threshold  , if a=1

with a being a random value in {0, 1} and it being the current iteration. Notice

that this operator is based on Michalewicz’s non uniform mutation for real coded

Genetic Algorthms (Michalewicz & Fogel, 2000).

• As other ACO models, BWAS considers the re-initialization of the pheromone

trails (algorithm restart) when the search gets stuck, which is done by setting

every pheromone trail to τ0. In earlier versions of the algorithm, the number of

different arcs between the best and worst solutions in the current population was

compared to some threshold value. More actual versions of the algorithm use a

different concept of stagnation to know when it should re-initializate the

pheromone matrix: the number of iterations without a change of the best global

solution.

The BWAS daemon_actions procedure is as follows:

1  Procedure daemon_actions

2    for each Sk do local_search(Sk) 

3    Scurrent-best = best_solution(S) 

4    if (best(Scurrent-best, Sglobal-best))

5      Sglobal-best = Scurrent-best

6    end if

7    for each edge ars ∈ Sglobal-best do

8      τrs = τrs + ρ ⋅ f(C(Sglobal-best))

9      sum = sum + τrs 

 10   end for

 11   τthreshold = sum / |Sglobal-best|

12   Scurrent-worst = worst_solution (Sk)

13   for each edge ars ∈ Scurrent-worst and ars ∉ Sglobal-best do

14     τrs = (1 - ρ) ⋅ τrs

15   end for



16   mut = mut(it, τthreshold) 

17   for each node/component r∈{1, ..., l) do

18     z = generate_random_value_in_[0, 1]

19     if (z ≤ Pm)

20       s = generate_random_value_in_[1, ..., l] 

21       a = generate_random_value_in_[0, 1]

22       if (a = 0) τrs = τrs + mut

23       else τrs = τrs - mut

24     end if

25   end for

26   if (stagnation_condition) 

27     for each edge ars do τrs = τ0

28   end if

29 end Procedure

The interested reader can refer to (Cordón, Fernández de Viana & Herrera, 2002a) for an

analysis of the individual performance of each of the three BWAS components and the

different combinations of them on the TSP. In that study, it is shown that the version of

BWAS that includes all three components performs better than other variants that include

only a single component or a combination of two of the three components in the most of

the cases. Thereby, the BWAS model can not ignore any of the three components if we

want it to perform effectively. A similar study was done for BWAS applied to the QAP in

(Cordón, Fernández de Viana & Herrera, 2002b). Moreover, a new, well-performing

ACO model called Best-Worst Ant Colony System, which is based on introducing the

three BWAS components into the ACS, is proposed in (Cordón, et al., 2002b).

EXPERIMENTS AND ANALYSIS OF RESULTS

In this section, we will present some results obtained with the BWAS  applied to the TSP

and we will compare them to some other ACO algorithms.

The TSP (Bentley, 1992) is a very well known classical combinatorial optimization

problem. It is an NP-hard problem, that is, there is no efficient deterministic algorithm

capable of solve it in polynomial time. Since the first proposals of ACO algorithms, this



problem has been extensively used to compare the efficiency of every new ACO

algorithm.

The problem is an analogy to a real problem. A salesman is supposed to visit -just one

time- all cities in a region and to return to the original one using the shortest possible tour

(to decrease transport costs).

More formally, the problem is described as: G = (N, A) is a complete weighted graph,

where N is the set of cities in the problem and A the set of arcs (roads) between them.

Every arc has a value dij, which represents the length of the arc (i, j) ∈ A. The problem is to

find the lowest cost Hamiltonian circuit in G.

One of the most important properties of this problem is the great similarity between the

search space for the salesman and the search space for ants. Both are weighted graphs (in

TSP the weight corresponds with the length of the roads between cities) where every arc

is a path or road with a degree of desirability (the length), and in both cases the goal of the

problem is to find the shortest path. This property makes very easy to adapt the ACO

metaheuristic to solve this problem.

For this study, we have selected eight different TSP instances. All of them belong to the

TSP Library (TSPLIB) (Reinelt, 2001). Specifically, we have selected the following

instances: brazil58, gr120, d198, lin318, att532, rat783, u1060 y d1291. The four former

ones represent small and “easy” instances, while the latter two represent large instances.

att532 and rat783 will be called mid-sized instances from now on.

All the parameters used to solve every instance are shown in table 2. These parameters

have been proved to be the best possible ones in previous works (Cordón, et al., 2002a).



For comparison purposes, two different algorithms have also been run on every instance.

These are the elitist AS (AS variation where the so called elitist ants also update

pheromone, see Section 2.1.4.1), which have been proved to give better results than AS,

and the ACS.

All runs have been made using the following conditions:

• We have used the same values for the common parameters of the different

algorithms.

• We have used a candidate list. That candidate list is fixed; to construct it, only

heuristic information has been considered, which is present at the beginning of the

run.

• We have considered the same seeds for the random number generators.

• We have used the same local search algorithm (see below).

• Both Elitist AS and ACS use the same restart component as BWAS. This two

versions will be noted EAS-Re and ACS-Re.

• All experiments have been run 10 different times and the maximum execution

time varies from 900 to 3600 seconds depending on the size of the problem (the

run time could be shorter if the best possible solution is found before the end of

the execution).

Parameter Value
Ant number m = 15

Number of executions 10
Max. Time of Execution T = 900 a 3600 sg.

Transition Rule α = 1 ; β = 2
Global evaporation Const. ρ = 0.2

Elitist AS
Elitist Ants m (15)

ACS
Local evaporation const. q0 = 0.8    ϕ = 0.2

BWAS
Mutation Probability Pm = 0.3, 0.25, 0.2

Iterations without change 0.3, 0.2, 0.3
Local Search

Candidate List Size 40
Selection Rule first better

Algorithm 2-opt

Table 2. Parameters used in TSP



In all cases there has been used a local search in order to improve the results. There exist

lots of different local search algorithms for this problem (Johnson & McGeoch, 1997). We

have used an improved version of the 2-opt (Bentley, 1992). This local search tries to

improve the solutions constructed by the ants by means of exchanges of arcs in the

solution. The improvements made to this technique are:

• It only uses a candidate list (a list with the nearest neighbours of every node). This

is made to increase the speed of the local search.

• It uses a “don’t look bit” to remember which nodes can not be improved.

In table 3, we show the results achieved for every algorithm. This table has 6 different

columns:

• The first shows the name of the algorithm.

• The second shows the best result obtained.

• The third shows the mean of the results.

• The fourth shows the standard deviation.

• The fifth is the mean error (proportion associated to the difference of the best

known solution to the problem and the mean of all solutions found by the

algorithm): 

results

Err=Best SolutionKnown
−

Meanof ¿

Best SolutionKnown

¿

.

• The sixth shows the mean of the number of restarts.

• Copt is the length of the optimum tour, n is the number of cities in the problem.

In view of the obtained results, the best algorithm is always the BWAS. The mean error is

always smaller than in EAS-Re and ACS-Re. Moreover, comparing the results with some

previously published in (Cordón, et al., 2002a) we can see that now they have been

improved (although we have not found any better individual solution, the mean error is

always smaller).



Problem Brazil58 (Copt = 25395, n = 58) Gr120 (Copt = 6942, n = 120)
Algorithm Best Mean Dev. Err. #R Best Mean Dev. Err. #R

EAS 25395 25395 0 0 - 6942 6942 0 0 -
ACS 25395 25395 0 0 - 6942 6946.1 5.49 0.06 -

EAS + Re 25395 25395 0 0 0 6942 6942 0 0 0
ACS + Re 25395 25395 0 0 0 6942 6943.8 3.79 0.03 1.1

BWAS 25395 25395 0 0 0 6942 6942 0 0 0.5
Problem Lin318 (Copt = 42029, n = 318) D198 (Copt = 15780, n = 198)

Algorithm Best Mean Dev. Err. #R Best Mean Dev. Err. #R
EAS 42029 42123.8 67.28 0.22 - 15780 15781 0.70 ¿ 0 -
ACS 42029 42230 148.48 0.48 - 15780 15784.9 5.67 0.03 -

EAS + Re 42029 42105 53.79 0.18 3 15780 15781 0.70 ¿ 0 0
ACS + Re 42029 42182.4 118.12 0.36 5 15780 15782.9 4.31 0.02 2.3

BWAS 42029 42084.1 98.60 0.13 2 15780 15780.4 0.51 ¿ 0 1.7
Problem Att532 (Copt = 27686, n = 532) Rat783 (Copt = 8806, n = 783)

Algorithm Best Mean Dev. Err. #R Best Mean Dev. Err. #R
EAS 27745 27823 70.67 0.49 - 8860 8878.6 17.06 0.81 -
ACS 27705 27810.3 64.44 0.45 - 8857 8892.7 20.93 0.97 -

EAS + Re 27793 27825.6 41.59 0.50 3.6 8843 8878.4 32.25 0.81 3.8
ACS + Re 27745 27835 57.56 0.54 7 8875 8899.5 22.33 1.05 7.6

BWAS 27686 27711 12.16 0.09 7.7 8816 8833.4 15.37 0.31 9.5
Problem U1060 (Copt = 224094, n = 1060) D1291 (Copt = 50801, n = 1291)

Algorithm Best Mean Dev. Err. #R Best Mean Dev. Err. #R
EAS 231644 232145.8 297.91 3.46 - 51210 51347.2 138.15 1.06 -
ACS 225675 226387.8 668.9 1.01 - 51901 51953.6 60.01 2.21 -

EAS + Re 230360 230806.4 390.8 2.90 2.9 51073 51236.7 119.56 0.85 4.5
ACS + Re 225243 226501 1059.57 1.06 2 51828 51986.8 105.80 2.28 5

BWAS 225310 225721.1 476.88 0.72 5.3 50890 50986.3 74.87 0.36 17.2

Table 3. Results for the TSP

To summarize, we would like to point out that:

• BWAS is a good alternative in ACO algorithms. With the same execution

properties, it gives better solutions.

• BWAS gives reasonably good solutions even when the values of its parameters

are not very appropriate, that is, BWAS is a robust algorithm.

• When the values of the parameters are fine-tuned, the robustness of the BWAS

increases, obtaining smaller mean errors.



EXCHANGE OF MEMORISTIC INFORMATION IN PARALLEL ACO

ALGORITHMS

The inherent structure of the ACO metaheuristic offers relative eases to parallelize the

algorithms based on ants behaviour. This parallelization, as will be seen in the next sub-

sections, can be done in several different ways. We will propose a new parallel ACO

model which introduces some EC aspects as well as we will analize some computational

results achieved with this model.

JUSTIFICATION OF PARALLELISM IN ACO

As said, instances of the ACO metaheuristic are easily parallelizable techniques. This

parallelism have been previously used (Middendorf, Reischle & Schmeck, 2002) (Michel

& Middendorf, 1998) (Gambardella, Taillard & Agazzi, 1999) in several different ways

and with several different targets.

First of all, we should notice that there exist two completely different kinds of parallel

approaches in ACO. The first one, which has been more extensively used, deals with the

possibility of exploiting more computing power using several machines to solve the

problem. That is, we use some (usually inter-connected) computers to solve a single

instance of a problem, implementing some kind of parallelism and some kind of

information exchange between processors.

Usually simple island models (where a processor works as a master and the rest are

slaves) have been applied with this purposes, because of the system simplicity. The

master processor usually manages all pheromone updates as well it orders the slave

processors to compute new solutions, that is, slave processors generate new solutions

(applying the usual ant behaviour and transition rule) while the master only receives the

solutions generated, updates pheromone and provides the needed memoristic information

to the slaves. Other more complicated models use a tree structure where some slave nodes

just apply a local search technique (as it can be slow, it is interesting to spend specialized

nodes just for this optimization). Both approaches are shown in figure 2.



This kind of parallelization is often known as a fine-grained parallelization, because each

node do have different and very concrete functions. As said, these kinds of approaches try

to increase the quality of the solutions by “simply” adding more computer power. The

basics of the algorithm are preserved and only vary the location where each element is

calculated.

We should be aware of one of the largest problems that this kind of parallelism brings.

The speed of our algorithms can not be expected to increase proportionally to the number

of processors used. Instead of it, there is a much lower limit that can not be overcome.

This side-effect is known as Amdahl’s  Law (Hennesy & Patterson, 2003), and it happens

because of communication costs and overheads between nodes. As we can see in figure 2,

there exist communication between all nodes, specially between the master node to all

other processors. We should try to minimize the length of the communications between

them to avoid efficiency losses. One of the main problems is that slave nodes which have

to generate new solutions need the memoristic information that is stored and updated in

the master. Sending the whole pheromone trail matrix can be a very limiting factor for the

algorithm. On the other hand, setting the local search process in new processors can be a

good improvement, because it does not need memoristic information, just the heuristic

one, which can be computed in the early stages of the algorithm by each node (it does not

change during the run time).

* Local search is optional.

Pheromone 
Updates

Solutions 
Construction *

Solutions 
Construction *

Solutions 
Construction *

Solutions 
Construction *

Pheromone 
Updates

Local 
Search

Solutions 
Construction

Solutions 
Construction

Local 
Search

Local 
Search

Local 
Search

Figure 2.  Different topologies to implement a 
parallel ACO with several processors.



The other kind of parallelization is not usually made (although in some cases it could be

done) through the use of several machines, but in a single one. That new approach

involves several different and independent colonies that at certain points share some kind

of information. In this case, this is an example of coarse-grained parallelization. Usually it

does not try to exploit more available computing power, but to offer a more sophisticated

scheme that produces (hopefully) better quality solutions with the same computing effort. 

In this approach, we have introduced some EC concepts to this kind of parallelization. As

it will be explained later, all the different colonies can be seen as chromosomes in a

simple Genetic Algorithm (GA).

A NEW PARALLEL ACO MODEL WITH EC COMPONENTS

The first approach made to construct a multi-colony ACO algorithm is to run an existing

algorithm several independent times. This kind of approach gives more exploration power

to the algorithm, because with every new run, different zones in the search space could be

explored. However, the exploitation side of the algorithm would be penalized: every

independent execution would have less time to find solutions and the most promising

paths could not be explored thoroughly.

The next step in the construction of the new model was to introduce some kind of

information exchange between colonies. They will run independently but, at certain

points, they will exchange some useful information which could be used by the other

colonies. 

One of the simplest information exchange schemes is to exchange the best ant (the best

solution) found so far by the colony. The other colonies can use this solution to reinforce

those paths with an additional amount of pheromone, what would increase the exploitation

of good arcs.

A more complex information exchange scheme involves the sharing of the whole

memoristic structure, that is, the pheromone matrix. In this case, there exist different

options about what to do with that matrix. A simple option is that the different colonies

share their matrices and continue their execution using the best one found so far. Other



possibilities involve some crossovers between matrices, and so on. All the different

existing approaches will be detailed later.

These approaches share some properties that have to be discussed. Apart from what sort

of information to share and when to share it, there exist several different ways of

exchanging the information. Three of the most important ones (taken from the parallel GA

field (Cantú-Paz, 2000)) are the master / slave scheme, the ring structure and random

pairs scheme. 

In the master / slave scheme, all colonies share their information at a certain point, and the

master selects and sends the best piece of that information to the slaves. This scheme is

described in more detail in figure 3.

The ring structure order all colonies and lets the information exchange occur in pairs of

consecutive colonies. This process is detailed in figure 4.

A random pairs scheme groups the colonies in pairs and lets the information exchange

happen between both colonies in every pair.

Slaves

Solution Generation
Pheromone Update
If we have to share info

3.1. Send info to the master
3.2. Receive info from master
3.3. Use received information

4. If no end_condition go to 1 

Master

Receive info from slaves

Select best info

Send best info to slaves

Figure 3: Master / Slave scheme to share information. The information shared could be the 
best solution found so far, the whole pheromone matrix, and so on.

Colony i

1. Solution Generation
2. Pheromone Update
3. If we have to share info

3.1. Send info to (i + 1)
3.2. Receive info from  (i – 1)
3.3. Use received information

4. If no end_condition go to 1

Colony 0

Colony 1

Colony 2

Colony 3

Figure 4: Ring structure for sharing information



Another problem that we have to solve is that, when colonies share their pheromone

matrices, there is no easy way of comparing their fitness, that is, we do not know how

good is a pheromone matrix compared with another one. That makes the decision of

choosing one or another difficult. There are several possibilities to solve this problem.

One of the easiest chances is to consider the fitness of the best solution found as the

fitness of the whole matrix. This can not be very precise, because as it has been said,

ACO uses a stochastic method to construct solutions, and a poor quality matrix could

produce, eventually, a very good solution, while a better matrix could not have been

produced very good solutions yet. Anyway, good matrices usually generate good

solutions, so we will use this approximation to solve that problem.

The last point we should focus on, is how the information, once it has been shared, is used

in the colonies. When colonies share the best solution found (the “best ant”), the only

thing that can be usually done with it is to deposit some extra pheromone on the paths

contained in that solution. That would increase the desirability of those paths, thus

allowing a higher exploitation of these tours.

When the information exchanged is the whole pheromone trail matrix, we could choose

among different possibilities. The easiest one is to replace the current pheromone matrix if

the one received if it has a better fitness. This option would work as creating “meeting

points” where different matrices could evolve independently, but at a certain point all

colonies would start using the same good matrix (and from that point every colony would

evolve independently again). 

Another possibility is to make some kind of crossover between matrices, as if they were

very large chromosomes in a sort of GA. This crossover could be done following very

different schemes. In our new model, we have used a crossover operator inspired in fuzzy

logic elements (Herrera, Lozano & Verdegay, 1996) which tries to preserve the most

relevant information of each matrix while also tries to achieve a greater diversity in order

to avoid stagnation in the algorithm.

This crossover operator performs a weighted average between all elements in both

matrices using the fitness of the matrix as the balancing parameter. That is:

τ rs
m  μ⋅τ rs

m11−μ ⋅τ rs

m
2 ∀ arc  r , s 



where

μ=
fit BS m1

fit BS m1 fit BS m2 

and where fit(BS(matrix)) is the fitness of the Best Solution found by the matrix.

Graphically, the result that we would like to obtain is represented in figure 5.



EXPERIMENTS AND ANALYSIS OF RESULTS

To test the performance of the new algorithm some experimentation with different

algorithms over instances of the TSP has been done. All of them are based on the Elitist

AS (EAS) but include some of the features that we have described in the previous

sections. The list of all the algorithms is shown on table 4.

The first four algorithms are identical but on the number of colonies used. With this four

experiments, we wanted to show if just the idea of parallelization obtains better results

than using a single colony. The following algorithms try to show the new ideas exposed,

from the best ant exchange or pheromone matrix exchange until the different schemes of

communication (master / slave, ring topology and random pairs scheme).

Every algorithm has been run 30 times without local search and another 30 times using

the enhanced 2-opt local search (see section 3.1.3). All other parameters used are shown

in table 5.

Algorithm Description
EASI_T1 Independent Executions of the EAS (1 colony)
EASI_T2 Independent Executions of the EAS (2 colonies)
EASI_T4 Independent Executions of the EAS (4 colonies)
EASI_T8 Independent Executions of the EAS (8 colonies)
EASA_M/S Best Ant Exchange in EAS ; Master / Slave Configuration (8 colonies)
EASA_Ring Best Ant Exchange in EAS ; Ring structure (8 colonies)
EASM_M/S Matrix Exchange in EAS ; Master / Slave Configuration (8 colonies)
EASM_Ring Matrix Exchange in EAS ; Ring structure (8 colonies)
EASM_Ave Matrix Averages in EAS ; Random Pairs Scheme (8 colonies)

Table 4: Used algorithms in the comparison.

Figure 5: Example of average of the pheromone matrices. Darker arcs have stronger pheromone

trails. Following the average, the most promising arcs (the arcs in the shortest tour) have more

pheromone, allowing the best solution to be found.



The instances used in this experimentation are eil101, gr120 and att532.

All the results obtained are shown in table 6. In that table, we can see the mean of all

executions, the standard deviation, best solution and error as they where defined in

section 3.1.3.

The results are clear. For small instances, our new model with crossover of pheromone

matrices is the best performing. In eil101 and gr120 without local search, the smaller error

was achieved with the EASM_Ave. That gives the highest degree of robustness for this

algorithm (although the best solutions were not found by this method).

It is also shown, for the first two problems, that paralellization seems to be a good

technique to improve results (the error was being reduced when new colonies were

incorporated to the algorithm).

When the problem size increases (att532), all parallel algorithms lose efficiency, and the

best performing is (with or without local search) the single colony algorithm. The main

reason for that behaviour is that the time used to solve the problem was not  enough and

parallel algorithms had to distribute their execution time over several colonies, thus not

allowing to enough exploit their search spaces.

Another important fact is that local search always improve the results (as it was expected)

but it does not interfere with algorithms, that is, local search improve the performance of

Parameter Value
Global number of ants m = 40
Number of colonies t = 8 (Except in EASI)
Ants per Colony m / t
Elitist Ants e = m / t
Run Time 900 seconds
Transition Rule α=1, β=2
Global Evaporation Constant ρ=0 . 2
Number of executions 30
Exchange of Information every it = 10
Candidate List Size 20

Table 5: Parameters used for TSP.



every algorithm almost in the same proportion (as it can be seen from the executions of

the att532 instance). That property allows us for future research to experiment only with

algorithms including local search assuring that all benefits acquired are made by means of

changes in the algorithms, not by means of the local search technique.



Instance eil101 without Local Search (Copt = 629)
Algorithm EASI_T1  EASI_T2  EASI_T4  EASI_T8  EASA_M/S  EASA_Ring  EASM_M/S  EASM_Ring  EASM_Ave

Mean 648.33 644.97 644.56 644.83 645.67 641.73 647.8 646.43 639.77
Std. Dev. 6.53 5.39 5.46 5.11 6.33 6.46 7.15 6.73 6.20

Best 634 635 634 631 629 630 635 632 631
Error 3.07 2.54 2.47 2.52 2.65 2.02 2.99 2.77 1.71

Instance eil101 WITH Local Search (Copt = 629)
Algorithm  EASI_T1  EASI_T2  EASI_T4  EASI_T8  EASA_M/S  EASA_Ring  EASM_M/S  EASM_Ring  EASM_Ave

Mean 629 629 629 629 629 629 629 629 629

Std. Dev. 0 0 0 0 0 0 0 0 0
Best 629 629 629 629 629 629 629 629 629

Error 0 0 0 0 0 0 0 0 0

Instance gr120 without Local Search (Copt = 6942)
Algorithm  EASI_T1  EASI_T2  EASI_T4  EASI_T8  EASA_M/S  EASA_Ring  EASM_M/S  EASM_Ring  EASM_Ave

Mean 7182.20 7154.2 7161.4 7144.13 7170.5 7146.9 7181.1 7159 7102.56
Std. Dev. 81.04 68.55 44.50 38.22 78.00 65.90 65.60 62.16 45.84

Best 7066 7034 7040 7067 7026 7010 7027 7066 7035
Error 3.46 3.06 3.16 2.91 3.29 2.95 3.44 3.12 2.31

Instance gr120 WITH Local Search (Copt = 6942)
Algorithm  EASI_T1  EASI_T2  EASI_T4  EASI_T8  EASA_M/S  EASA_Ring  EASM_M/S  EASM_Ring  EASM_Ave

Mean 6942 6942 6942 6942 6942 6942 6942 6942 6942

Std. Dev. 0 0 0 0 0 0 0 0 0
Best 6942 6942 6942 6942 6942 6942 6942 6942 6942

Error 0 0 0 0 0 0 0 0 0

Instance att532 without Local Search (Copt = 27686)
Algorithm  EASI_T1  EASI_T2  EASI_T4  EASI_T8  EASA_M/S  EASA_Ring  EASM_M/S  EASM_Ring  EASM_Ave

Mean 31272.3 31383.2 31372.1 31558.5 31604.0 31643.9 31451.9 31304.1 31551.5
Std. Dev. 353.4 222.9 266.7 267.1 263.4 321.8 333.9 292.9 237.4

Best 30581 30997 30838 30975 31158 31080 30588 30840 30965
Error 12.95 13.35 13.3 13.99 14.15 14.30 13.6 13.06 13.9

Instance att532 WITH Local Search (Copt = 27686)
Algorithm  EASI_T1  EASI_T2  EASI_T4  EASI_T8  EASA_M/S  EASA_Ring  EASM_M/S  EASM_Ring  EASM_Ave

Mean 28045.9 28079.3 28077.0 28095.1 28082.63 28100.36 28079.1 28080.4 28156.2

Std. Dev. 53.39 39.48 44.04 50.11 62.86 50.18 47.60 45.95 53.91
Best 27927 28002 27962 28002 27931 28017 27983 27946 28024

Error 1.30 1.42 1.41 1.48 1.43 1.50 1.42 1.42 1.70

Table 6: Results of the experiments.



FUTURE WORKS AND RESEARCH LINES

The new ACO models with EC components proposed are an interesting research field

which can produce good and efficient algorithms to solve very different sorts of problems.

More specifically:

• More exhaustive statistic analysis should be done to demonstrate the efficiency of

both models. For this purpose, more instances of the TSP problem will be

evaluated as well some as new well-known problems as the QAP will be analysed

using different statistic tests.

• Both new models can be applied to solve different Bioinformatics problems,

concretely the gene regulation process and the construction of genetic networks

from DNA sequence analysis and oligonucleotide microarrays.

• Parallelization can also be introduced in different ant algorithms, not just in the

EAS, but in ACS or BWAS to achieve better computational results.

• New EC concepts can also be introduced into existing ACO algorithms to obtain,

for example, good solutions on multi-modal optimization problems. It will be

necessary a deeper insight into EC and ACO algorithms to identify all exploitation

and exploration components in both techniques.

CONCLUDING REMARKS

ACO metaheuristic is one of the most recent bioinspired metaheuristics. It simulates ants’

behaviour when they search for food to solve complex combinatorial problems. EC is a

set of different computational techniques which work by emulating evolution in nature.

These techniques include very well studied algorithms, like Genetic Algorithms or

Evolutionary Programming.



Despite the differences between ACO metaheuristic and EC, both share properties that

allow to improve the results obtained by both approaches constructing special ACO

algorithms which include some EC components.

In this work, we have introduced both ACO metaheuristic and EC to afterwards present

two new ACO algorithms which integrate some EC concepts to improve their

performance; as well as some empirical results on their performance. 

We have also emphasized the importance of a good balance between exploration and

exploitation of the search space for optimization algorithms (particularly on ACO), and

have explained the behaviour of every new EC component that has been added to the new

models.
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i As said in (Dorigo & Stützle, 2003), the set of edges may fully connect the components. In this case, the implementation
of the constraints is fully integrated into the construction policy of the ants.
ii This aspect will be analyzed in depth in the next sections when introducing specific ACO algorithms.


